

Thick and Thin Liquid Lithium Targets

Presented at

DOE Nuclear Physics Division RIA: R&D Workshop August 26 – 28, 2003

Presented by

Claude B. Reed

Jerry Nolen, James Specht, Vince Novick, John Bogaty, Itacil Gomes, Perry Plotkin (paper 3.1.3)

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

High-power Production-target and Stripper-film Development

Risk / Opportunity Matrix

- Targets
- Thin Film Strippers

Performance Testing Status

- Targets
- Thin Film Strippers future

Alkali Metal Technical and Safety Issues

- Engineering
- Thermalhydraulics
- Liquid metal pumps
- Alkali metal handling
- Fire protection
- Waste treatment & disposal

Future needs

- Targets
- Thin Film Strippers

Risk / Opportunity Matrix

Windowless liquid lithium prototype testing

Cost impact:
Technical Impact:
Schedule Impact:
Me
Success probability:
High

Medium High Medium High High power electron beam demonstration of 1-cm thick liquid lithium jet. In-beam demonstration of target performance (thickness, uniformity and stability). Electron test without heat exchanger by end of FY2003 to meet DOE performance measure. Backup is large rotating graphite wheel; probably power limited to less than 100 kW, which impacts minimum technical baseline power objective.

Thin liquid lithium stripper films; proof of principle

Cost impact:
Technical Impact:
Schedule Impact:
Success probability:

Medium High Low High Design and construct high-pressure, low flow liquid lithium loop. Develop filter for continuous operation with small diameter nozzles. Flow must be ~50 m/s and the thickness ~5 microns for the first stripper and ~25 m/s and ~200 microns for the second. Evaluate thickness, uniformity and stability. Backup is large rotating graphite wheel, which impacts minimum technical baseline power objective.

RIA Windowless Li Target

 heavy-ion beams on a low-Z (Li) target

Beam energy:	400 MeV/u
Beam power:	400 kW
Beam diameter:	1 mm
Target thickness:	1.5 g/cm ²

Liquid Lithium Jet

Temperature rise across 1 mm dia. Beam ~ 180 °C

5 x 10-mm liquid-lithium jet flowing at 10 m/s in vacuum (5-mm wide in this view)

Ultimate vacuum is 10⁻⁷ Pa or 10⁻⁹ Torr based on vapor pressure of Li at 200°C₅

The Choice of Liquid Lithium

- Low Z (=3)---good from nuclear considerations
- Large working temp range ∆T ~ 1160 °C
 - High boiling point (1342°C)
 - Low melting point (181°C)
- Low vapor pressure (10⁻⁷ Pa at 200°C)---only Ga and Sn lower
- Lowest pumping power required because:
 - Lowest density (511 kg/m³)---easiest liquid metal to pump.
 - High heat capacity (4.4x 10³ J/kg-K)---highest of liquid metals
 - Low viscosity (5.4 x 10⁻⁴ Pa-s)
- Low Prandtl No. ~0.05 ⇒ excellent heat transfer
- Applications
 - Heat Transfer fluid to cool solid targets with light-ion beams
 - Functions as <u>combined coolant and target</u> for high-power heavyion beams

Windowless liquid lithium prototype testing

 Objective: to simulate a 300-kW RIA uranium beam, deposited in the first 4 mm of the flowing lithium jet, can be handled by the windowless target

1-MeV Electron Beam Incident on a Lithium Jet

Windowless liquid lithium prototype testing

- Modified the existing windowless lithium target system to demonstrate its heat removal capability
- Completed modifications:
 - Increased lithium inventory
 - Added EM flowmeter
 - Added pressure transducer
 - Added "portable" heater systems

- Leased a high power 1 Mev Dynamitron
 - 1 mm dia. 40 mA beam of 1 Mev electrons
 - 40 kW on target

RIA Windowless Li Target

<u>Lithium vapor pressure</u> vs <u>beam on target</u> <u>run time</u>, 40 kW

Beam on target floor plan

Liquid metal pressure transducer

GEFRAN Transducer
Minimum pressure = 0.6 to 0.9 psia
Average reading error = 0.02 V = 0.5 psid
Accuracy error (0.25% FS) = 0.625 psi

Liquid Lithium Jet-Beam Spot Image

Temperature rise across 1 mm dia. Beam ~ 180 °C

Newtonian telescope and CCD camera to view beam spot

Liquid Metal Engineering Issues

- Materials of construction
 - SS, Fe, Ta, Mo, Nb, Be, W
- Mechanical joint designs, sealing materials
- Grayloc®, Cajon®, Conflat w/soft iron gaskets, SS o-rings
- Secondary containment / scrubber
- Heating system design
- Wetting of EM pumps & flowmeters

Target & Stripper Heater Systems

 Multiple-zone control system to minimize hot spots

Heater & Recorder Thermocouple Placements: Windowless Lithium Target Assembly

ANL/MSU DC EM pump for adjustable thickness target

DC EM pump for RIA Windowless target

Current (200 amps)

B-field (0.8 T)

Lithium Flow

(4800 Pa)

3 Li channels: each 2.54 cm × 0.80 cm Applied Magnet Field

B = 0.8 T

All wall thickness = 0.81 mm

15

Risk / Opportunity Matrix

Windowless liquid lithium prototype testing

Cost impact:
Technical Impact:
Schedule Impact:
Success probability:

Medium High Medium High High power electron beam demonstration of 1-cm thick liquid lithium jet. In-beam demonstration of target performance (thickness, uniformity and stability). Electron test without heat exchanger by end of FY2003 to meet DOE performance measure. Backup is large rotating graphite wheel; probably power limited to less than 100 kW, which impacts minimum technical baseline power objective.

Thin liquid lithium stripper films; proof of principle

Cost impact:
Technical Impact:
Schedule Impact:
Success probability:

Medium High Low

High

Design and construct high-pressure, low flow liquid lithium loop. Develop filter for continuous operation with small diameter nozzles. Flow must be ~50 m/s and the thickness ~5 microns for the first stripper and ~25 m/s and ~200 microns for the second. Evaluate thickness, uniformity and stability. Backup is large rotating graphite wheel, which impacts minimum technical baseline power objective.

RIA Thin Film Strippers

- Located within the driver linac
- Increases ion beam charge state

To date:

- Water film
- 0.25 mm diameter orifice
- 33 m/s jet velocity
- 15 atmospheres driving pressure
- >2 micron film thickness
- Under partial vacuum
- Film area ~ 1 cm diameter

RIA Thin Film Stripper Pump Progress

- RIA Thin Film Stripper Pump Design
 - DC EM Pump
 - Low flow
 - High discharge pressure

Status

Liquid Metal Systems for High Power Accelerators

- Targets---Look very promising, 40kW beam on target in 9/03
- Thin Film Strippers---development underway

Technical Issues

- Engineering---well understood
- Thermalhydraulics---well understood
- Liquid metal pumps ---unique pump required for Li stripper

Alkali Metal Safety Issues

- Alkali metal handling---well understood
- Fire protection---well understood
- Waste treatment & disposal---well understood

Needs for future work

Lithium Target

From e-beam tests: collect data for Safety Analysis operating envelope

Lithium thin film stripper

- High temperature, high pressure pump development [first half of FY2004].
- Build thin film test stand [first half of FY2004].
- Film production and stability [second half of FY 2004].
- Nozzle design and erosion resistance [second half of FY2004].
- Lithium purification and chemistry control [FY2004].
- Average film thickness [second half of FY2004].
- Film thickness variations [FY2005].
- Lithium velocity distributions [FY2005].
- Studies of film stability at equivalent uranium beam power density [FY2005].

